Basis partition of the space of linear programs through a differential equation
نویسنده
چکیده
The space of linear programs (LP) can be partitioned into a finite number of sets, each corresponding to a basis. This partition is thus called the basis partition. The closed-form solution on the space of LP can be determined with the basis partition if we can characterize the basis partition. A differential equation on the Grassmann manifold which represents the space of LP provides a powerful tool for characterizing the basis partition. In paper [3], the author presented some basic concepts and properties of this differential equation. This paper continues the research of [3] and presents three useful properties.
منابع مشابه
Space-time radial basis function collocation method for one-dimensional advection-diffusion problem
The parabolic partial differential equation arises in many application of technologies. In this paper, we propose an approximate method for solution of the heat and advection-diffusion equations using Laguerre-Gaussians radial basis functions (LG-RBFs). The results of numerical experiments are compared with the other radial basis functions and the results of other schemes to confirm the validit...
متن کاملBuckling of Doubly Clamped Nano-Actuators in General form Through Spectral Meshless Radial Point Interpolation (SMRPI)
The present paper is devoted to the development of a kind of spectral meshless radial point interpolation (SMRPI) technique in order to obtain a reliable approximate solution for buckling of nano-actuators subject to different nonlinear forces. To end this aim, a general type of the governing equation for nano-actuators, containing integro-differential terms and nonlinear forces is considered. ...
متن کاملThe solving linear one-dimemsional Volterra integral equations of the second kind in reproducing kernel space
In this paper, to solve a linear one-dimensional Volterra integral equation of the second kind. For this purpose using the equation form, we have defined a linear transformation and by using it's conjugate and reproducing kernel functions, we obtain a basis for the functions space.Then we obtain the solution of integral equation in terms of the basis functions. The examples presented in this ...
متن کاملNUMERICAL SOLUTION OF INTEGRO-DIFFERENTIAL EQUATION BY USING CHEBYSHEV WAVELET OPERATIONAL MATRIX OF INTEGRATION
In this paper, we propose a method to approximate the solution of a linear Fredholm integro-differential equation by using the Chebyshev wavelet of the first kind as basis. For this purpose, we introduce the first Chebyshev operational matrix of integration. Chebyshev wavelet approximating method is then utilized to reduce the integro-differential equation to a system of algebraic equations. Il...
متن کاملThe Petrov-Galerkin Method and Chebyshev Multiwavelet Basis for Solving Integro-Differential Equations
Abstract: There are some methods for solving integro-differential equations. In this work, we solve the general-order Feredholm integro-differential equations. The Petrov-Galerkin method by considering Chebyshev multiwavelet basis is used. By using the orthonormality property of basis elements in discretizing the equation, we can reduce an equation to a linear system with small dimension. For ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008